+ Yorum Gönder
Yudumla ve Soru(lar) ve Cevap(lar) Bölümünden Matematikle ilgili küçük bilgiler ile ilgili Kısaca Bilgi
  1. Ziyaretçi

    Matematikle ilgili küçük bilgiler





  2. Hasan
    Özel Üye





    Cevap: Matematiğin Temelleri

    Matematiğin Temelleri hakkında ansiklopedik bilgi


    Matematiğin temelleri olarak bilinen matematik dalı matematiğin tümü için geçerli olan en temel kavramları ve mantıksal yapıları inceler. Sayı, küme, fonksiyon, matmatiksel tanıt, matematiksel tanım, matematiksel aksiyom, algoritma vb. gibi kavramlar Matematiksel mantık, Aksiyomatik Küme Teorisi, Tanıtlama Teorisi, Model Teorisi, Hesaplama teorisi, Kategori Teorisi gibi yine matematiğim temelleri olarak anılan alanlarda incelenir. Bununla birlikte matematiğin temellerinin araştırılması matematik felsefesinin ana konularından biridir. Bu daldaki can alıcı soru matematiksel önermelerin hangi nihai esaslara göre "doğru" ya da "gerçek" kabul edilebileceğidir.

    Geçerli baskın matematiksel paradigma aksiyomatik küme kuramı ve formel mantık üzerine kurulmuştur. Günümüzde neredeyse bütün matematik teoremleri küme kuramının teoremleri şeklinde ifade edilebilmektedir. Bu bakış açısına göre matematiksel bir önermenin doğruluğu (gerçekliği) önermenin formel mantık yoluyla küme kuramının aksiyomlarından türetilebildiği iddiasından başka bir şey değildir.

    Bununla birlikte bu formel yaklaşım bazı konuları aydınlatmakta yeterisz kalır: Neden kullandığımız aksiyomlar yerine başka aksiyomlar kullanmayalım? Neden kullandığımız mantık kuralları yerine başka mantık kuralları kullanmayalım? Neden "doğru" matematiksel önermeler (örneğin aritmetik yasaları) fiziksel dünyada doğruymuş gibi görünür? Bu sorunsal Eugene Wigner tarafından ( 1960) "The unreasonable effectiveness of mathematics in the physical sciences" (Matematiğin doğa bilimlerindeki anlaşılmaz etkililiği) adlı çalışmasında ayrıntılı olarak işlenmiştir.

    Yukarıda belirtilen formel gerçeklik nosyonunun hiçbir manası da olmayabilir. Başka bir deyişle tüm önermelerin, hatta paradoksların, küme kuramı aksiyomlarından türetilmesi olanaklı olabilir. Bunun ötesinde Gödel'in ikinci teoreminin sonucu olarak bunun böyle olmadığından hiçbir zaman emin olamayız.

    Matematiksel gerçekçilikte ( Platonizm olarak da bilinir), insanlardan bağımsız olan bir matematiksel nesneler dünyasının var olduğu öne sürülür. Matematiksel nesnelere ilişkin doğrular insanlar tarafından keşfedilir. Bu görüşe göre doğanın yasaları ve matematiğim yasaları benzer bir statüdedir ve matematik yasaların doğadaki etkililiğinin mantıksız olduğu savı geçerliliğini yitirir. Aksiyomlarımız değil, matematiksel nesnelerin elle tutulabilir gerçek dünyası matematiğin temellerini oluşturur. Bu noktada doğal olarak beliren soru, (Bu matematiksel dünyaya nasıl erişlebilir?) sorusudur.

    Matematik felsefesinde bazı modern kuramlar, özgün anlamıyla, temellerin var olduğunu reddeder. Bazıları matematiksel uygulama üzerinde yoğunlaşır ve matematikçilerin bir sosyal grup olarak somut çalışmalarını betimlemeyi ve çözümlemeyi amaçlar. Yine başkaları, matematiğin 'gerçek dünyaya' uygulandığında güvenilirliği konusunda insanın bilişseliğine yoğunlaşarak matematiği bilişsel bilim olarak oluşturmaya çalışır. Bu kuramlarda temeller yalnızca insan düşüncesinde bulunur ve 'nesnel' dış yapıda yoktur. Bu konu hala çözüme kavuşturulamamıştır.

    alıntı







  3. Hasan
    Özel Üye
    Matematik

    Matematik, sayma, ölçme, cisimlerin şekillerini tanımlama gibi temel işlemlerden ortaya çıkan ve yapı, düzen ve ilişkileri inceleyen bilim dalı. Mantıksal irdeleme ve nicel hesaplamaları konu alan matematik, idealleştirme ve soyutlamalara dayanır.
    Matematik hakkında ansiklopedik bilgi


    Matematik, sayma, ölçme, cisimlerin şekillerini tanımlama gibi temel işlemlerden ortaya çıkan ve yapı, düzen ve ilişkileri inceleyen bilim dalı. Mantıksal irdeleme ve nicel hesaplamaları konu alan matematik, idealleştirme ve soyutlamalara dayanır. 17. yüzyıl sonrasında fiziksel bilimler ve teknolojinin vazgeçilmez bir parçası durumuna gelen matematik, günümüzde sosyal bilimlerde ve yaşam bilimlerinde de aynı konuma ulaşmıştır.

    Tüm matematik sistemleri bir aksiyomlar kümesi ve bu aksiyomlardan mantık yoluyla türetilen teoremlerden oluşur. Aksiyomlar kümesinin doğruluğu ya da yanlışlığı matematiğin tartışma konusu değildir, ama mantıksal olarak tutarlı olması, kendi içinde çelişki doğurmaması istenir. Bu bakımdan matematik soyuttur, değişik bir aksiyom kümesinden farklı sonuçlar türetilebilir. Öte yandan matematik yöntemleri öteki bilimlerce kullanıldığında somut sonuçlar elde edilir. Burada önce gözlemlerden kaynaklanan varsayımlar yapılarak bir model oluşturulur. Varsayımlar modelin aksiyomlarıdır. Türetilen matematik teoremlerinin yorumlan ise somuttur. Örneğin Newton kuramında bazı fiziksel varsayımlar yapılır ve hareket problemi bir matematik problemine dönüştürülür. Einstein'ın özel görelilik kuramında gene hareket problemi, bu kez farklı fiziksel varsayımlarla ele alınır. İki kuramda da elde edilen sonuçların matematiksel doğruluğu kanıtlanabilir.

    Ama bu sonuçların fiziksel yorumlan olan Newton kuramı ile özel görelilik kuramı farklı şeyler söylemektedir. Bu farklılık varsayımlardan kaynaklanmaktadır ve kuramlann fiziksel doğrulukları ancak deneyle sınanabilir.

    Tarihte matematiksel düşünce ölçme, borç, vergi, astronomi hesaplan gibi pratik problemlere çözüm tekniklerinin geliştirilmesiyle başladı. Eski Yunan'da başlayan felsefeyle etkileşimi, matematiği genelleme ve soyutlamalara götürdü. Öte yandan bu genelleme ve soyutlamalar matematiğin kullanım alanını genişletti. Matematikte genelleme ve soyutlamalara çok rastlanır. Birbirinden farklı görünen çok sayıda probleme tek bir genel problemin özel durumları olarak bakılabilir. Örneğin üçgenlerin alanlarını tek tek hesaplamaya çalışmaktansa problemi genelleyip üçgenin alan formülünü türetmek hem daha kolaydır, hem de böylece daha geniş bir uygulama alam ortaya çıkar.

    Günümüzde matematik kendi dinamiğinin yanı sıra başka bilimlerle arasındaki etkileşim nedeniyle de çok hızlı bir gelişme göstermektedir. Bu gelişmenin sonucu matematik içinde çok sayıda dal ortaya çıkmıştır (bak. analiz; aritmetik; cebir; geometri; istatistik; kümeler kuramı; olasılık kuramı; optimizasyon; oyunlar kuramı; sayılar kuramı; sayısal çözümleme; trigonometri). İlkel diller incelendiğinde sayma gibi basit görünen bir işlemin oluşmasında toplumlar ancak ilk birkaç sayıya isim koyabilmişler, gerisini "çok" olarak nitelemişlerdir. Matematiksel düşüncenin ilk adamı olan rakamlar ve sayma işlemi ancak ekonomisi düzenli, gelişmiş yerleşik toplumlarda yazı ile birlikte ortaya çıkmıştır.

    Antik Çağda ilk önemli matematik merkezi olarak, IÖ 2000'lerden sonra Babil görülür. Babilliler ekonomik yapılannın gerektirdiği denklem çözme, kök bulma, alan ve hacim hesaplama gibi tekniklerin yanı sıra astronomiye olan yakın ilgileri nedeniyle trigonometriyi geliştirdiler. Babil'in matematiğe belki en büyük katkısı 60 tabanlı sayı sistemidir. Sıfır simgesinin de katılmasıyla onlu sisteme çok benzeyen 60 tabanlı sayı sistemi bugün bile açı ve zaman ölçümünde kullanılmaktadır.

    Eski Mısır'dan günümüze ulaşan iki önemli matematik yapıtı Golenişev papirüsü (İÖ y. 1900) ile Rhind papirüsüdür (İÖ 1700'den önce). Bunlar çağlarının aritmetik ders kitaplan olarak nitelenebilir. Gerek Mısır'da gerekse daha sonra Roma uygarlığında matematik, pratik bir araç olmaktan öteye gitmemiştir. Yunan matematiği İÖ 7-6. yüzyıllarda Mezopotamya ve Mısır'dan gelen bilgilerin derlenmesiyle oluştu, ama kendi ürünlerini İÖ 5. yüzyılın ikinci yansından sonra vermeye başladı. Elealı Zenon'un zaman ve uzayın sonsuz sayıda parçaya bölünmesi hakkındaki paradoksla-n, Demokritos'un atomcu görüşleri, geometrik niceliklerin ölçümünde yeni aksiyomlar gerektirdi ve kuramsal matematik kavramını oluşturdu. İÖ 4. yüzyıl matematikçileri niceliklerin ölçümünde rasyonel sayıların (tamsayılann birbirlerine oranlan) yeterli olmadığını buldular ve irrasyonel sayıların geometrik kuramını geliştirdiler. Alan ve hacim hesaplarındaki sonsuz küçük kesitler bugünkü integral kavramının ilk işaretleri olarak görülebilir.

    Kuramsal matematiğin sonsuz kavramı dışında Eski Yunan matematiğinin ilgilendiği iki önemli konu konikler ile astronomiden kaynaklanan küresel geometri problemleri oldu. İÖ 4. yüzyılın sonunda matematikte erişilen düzey ve yetkinlik daha sonra yazılan Eukleides'in ünlü Stoikheia'sı (Elemanlar) ile simgelenir.

    Kuramsal matematik Antik Çağda Arkhimedes ve Apollonios ile doruğa ulaştı. Konikler konusunda erişilen bulgulann önemi ancak 19. yüzyılda izdüşümsel geometrinin gelişmesiyle anlaşılabildi. Arkhimedes ve Apollonios'tan sonra gelişme astronomiden kaynaklanan problemler doğrultusunda oldu. Gezegenlerin yörüngelerinin belirlenmesi, sayısal tablolar, mekanik aygıtlann bulunması ve İS 100 dolaylarında Menelaos'un küresel trigonometrideki sonuçlan Ptolemaios'un İS 2. yüzyılda astronomide ortaya koyduğu bulgulara temel oluşturdu. İS 4. yüzyıldan sonra bilim eski bulguların yeniden gözden geçirilmesi ve öğretilmesine dönüştü. Klasikler yeniden yorumlandı, eski kitaplar üzerine yeni tezler yazıldı. Zaman içinde bu hep böyle süregidince Bizans dönemine Yunan matematiğinin yalnızca basit bir özeti kaldı.

    Ortaçağda bilim Hindistan'da ve İslam dünyasında yeniden canlandı. Bağdat'ta Abbasi halifesi Mansur'un etkisiyle Yunan bilim yapıtlarının sistematik bir biçimde çevrilmesine girişildi. Hint astronomisinin de etkisiyle Bağdat ilk İslam astronomi merkezi oldu. Matematik ve astronominin bu yeniden canlanışında önemli etkenlerden biri de Bağdat okulundan Harizmi (y. 780 -y. 850) oldu. Bu canlanış özellikle trigonometri ve küresel trigonometride Antik Çağdakinin çok üstünde bir gelişme doğurdu. İslam matematik ve astronomi geleneği 1400'lere değin aralıksız sürdü.

    İslam biliminin Avrupa'ya yayılması 11. yüzyılda başlar. Bu konuda öncülüğü yapanlar 11. yüzyılda İngiliz filozof Bath'lı Adelard ve 12. yüzyılda İtalyan matematikçi Leonardo Pisano'dur. Bu yüzyıllarda Yunan bilim klasikleri Arapça çevirilerinden bu kez Latinceye çevrildi. Bu yapıtlar Rönesans'ın bilim yönünün temelini oluşturdu.

    16. yüzyılın ortalarında Kopernik'in astronomi, Vesalius'un anatomi alanındaki bulguları eski klasiklerin yanlışlarını ortaya çıkarmıştı. Matematikte yeni bir çağı müjdeleyen ilk bulgular İtalya'da del Ferro, Cardano, Tartaglia ve Ferrari'nin üçüncü ye dördüncü derece denklemlere çözüm getirmeleri oldu. 16. yüzyılın sonlarında Fransa'da Viete'nin bilinmeyen büyüklükler için harflerle işlem yapması çok hızlı gelişecek olan simgesel, cebirin temelini attı.
    17. yüzyılda İskoçya'da Napier logaritmayı buldu. Cavalieri, Kepler'in sonsuz küçüklerle ilgili yöntemlerini geliştirerek geometriye uyarladı. Örneğin, elipsin alanı bu yöntemle hesaplanabildi. 1637'de Fransız filozof-matematikçi Descartes büyük buluşu analitik geometriyi ortaya koydu. Fermat'nın da katkılarıyla analitik geometri, geometri problemlerini cebirsel problemlere dönüştüren yeni bir araç oldu. Matematiği bir yan uğraş olarak sürdüren Fermat'nın sayılar kuramındaki bulguları ve Pascal'la birlikte kurduğu olasılık kuramı ona en büyük amatör matematikçi unvanını kazandırmıştır.

    Newton ve Leibniz'in 17. yüzyılın ikinci yarısırıda diferansiyel ve integral hesabı bulmaları matematikte çok önemli bir adımı simgeler. Newton'un Philosophiae naturalis principia mathematica ( 1687; Doğa Felsefesinin Matematik İlkeleri) adlı yapıtı da gelmiş geçmiş en büyük bilimsel yapıt olarak kabul edilir. Bu yapıtında kütleçekimi yasasını da ortaya koymuş olan Newton'un temel amacı doğayı anlamaktı; buna karşılık Leibniz bilgiye ve evrensel niteliklere ulaşan yolu açmak istiyordu. Leibniz'in bu amaçla geliştirmeyi tasarladığı simgesel mantık, George Boole tarafından ancak 19. yüzyılın ortalarında ortaya konabildi. Ama onun diferansiyel yöntemi 18. ve 19. yüzyıl matematiğinin gelişmesine temel oluşturdu.

    18. yüzyıl matematiğinin en önemli adı Leonhard Euler'dir. Değişimler hesabı ve diferansiyel geometrinin kurucuları arasında yer alan Euler, analiz ve sayılar kuramı başta olmak üzere matematiğin hemen her dalına önemli katkılarda bulunmuştur. 18. yüzyılın öteki büyük matematikçileri arasında J.-L. Lagrange, J. L. R. d'Alembert, P.-S. Laplace ve G. Monge anılabilir.

    19. yüzyılda önemli bir gelişme Eukleidesçi olmayan geometrilerin ortaya konmasıdır. Eukleidesçi geometri Stoikheia'da belirlenmiş olan beş aksiyom üzerine kurulmuştu. Bir noktadan, verilen bir doğruya yalnızca bir paralel çizilebileceğini belirleyen beşinci aksiyomu, matematikçiler, yüzyıllar boyunca öteki aksiyomlara dayanarak kanıtlamaya çalışmışlar, ama bunda başarılı olamamışlardı. 19. yüzyılın ilk yarısında N. İ. Lobaçevski ve J. Bolyai, 1854'te de B. Riemann paralellik aksiyomu olmadan da tutarlı geometri modelleri kurulabileceğini gösterdiler. Felsefi açıdan öneminin yanı sıra, Riemann'ın bulguları ileride Einstein'ın görelilik kuramının matematiksel tabanını oluşturacaktı. 19. yüzyılın en büyük matematikçilerinden biri de, matematiğin hemen her dalına önemli katkılarda bulunmuş olan C. F. Gauss'tur.

    19. yüzyılın ikinci yarısı çok hızlı bir gelişmenin yanı sıra matematiğin aksiyomatik yapısının yeniden gözden geçirilmeye başlamasını simgeler. Yeni bulguların beraberinde getirdiği temel sorunların yanıtlanması gerekiyordu. Weierstrass ve Dedekind'in gerçek sayılara ilişkin temel bulguları, Cantor'un sonsuzbüyüklükleri sınıflandırması matematiğin aksiyomatik yapısına ışık tutar.

    Matematiğin gelişmesinde bazı problemlerin özel bir konumu olmuştur. Fermat'nın çözdüğü ve bir kitabın kenarına not ettiği ünlü problem (n = 3, 4, için x" + y" = z" denklemini sağlayan x, y, z tamsayıları yoktur) Fermat problemi olarak anılır {bak. Fermat'nın büyük teoremi). Ama 300 yıldır Fermat problemini kimse çözememiştir. Problemi çözmek için gösterilen çabalar ise matematiğe çok şey kazandırmıştır. 20. yüzyıl matematiğinde etkin bir yol gösterici de Hilbert'in 1900'de Paris'te İkinci Uluslararası Matematik Kongresi'nde önerdiği 23 problem olmuştur. Güncel birçok soru ve araştırma alanı, kaynağını Hilbert'in bu problemlerinden almaktadır. Matematiğin Konuları

    Sayılar

    Sayılar -- Doğal sayılar -- Tam sayılar -- Asal sayılar -- Rasyonel sayılar -- Reel sayılar -- Karmaşık sayılar -- p-sel sayılar -- Sürreel sayılar -- Matematiksel sabitler -- Sonsuz

    Hesap

    Aritmetik -- Hesap -- Vektör Hesabı -- Analiz -- Diferansiyel Denklemler (Türevsel) -- Dinamik Sistemler ve Kaos Teorisi -- Kesirli Hesap -- Fonksiyonlar Listesi -- Trigonometrik Fonksiyonlar Temel Matematiksel

    Yapılar

    Monoidler -- Gruplar -- Halkalar -- Cisimler -- Topolojik Uzaylar -- Manifoldlar -- Hilbert Uzayları -- Sıralamalar Temel Matematiksel

    Kavramlar

    Limit -- Süreklilik -- Türev ve Türevlenebilirlik -- Analitiklik -- İntegrallenebilirlik -- Ölçülebilirlik -- Sayılabilirlik -- Tıkızlık -- Ölçütlerin Elenebilirliği -- Eşyapı -- Homotopi -- İyi-sıralılık ilkesi

    Matematiğin Ana Dalları

    Soyut Cebir -- Sayılar Teorisi -- Cebirsel Geometri -- Grup Teorisi -- Analiz -- Topoloji -- Çizge Teorisi -- Genel Cebir -- Kategori Teorisi -- Matematiksel Mantık -- Türevsel Denklemler -- Kısmi Türevsel Denklemler -- Olasılık

    Uzay

    Topoloji -- Geometri -- Trigonometri -- Cebirsel Geometri -- Diferansiyel Geometri -- Diferansiyel Topoloji -- Cebirsel Topoloji -- Lineer Cebir -- Fraktal Geometri

    Sonlu Matematik

    Kombinatroniks -- Saf Küme Teorisi -- Olasılık -- Hesaplama Teorisi -- Sonlu Matematik -- Kriptografi -- Çizge Teorisi -- Oyun Teorisi

    Uygulamalı Matematik

    Mekanik -- Sayısal Analiz -- Optimizasyon -- Olasılık -- İstatistik -- Finansal

    Matematik Ünlü Kuramlar ve Sanılar

    Fermat'nın Son Teoremi --
    Riemann Hipotezi --
    Süreklilik Hipotezi --
    P=NP --
    Goldbach Sanısı --
    Gödel'in Yetersizlik Teoremi --
    Poincaré Sanısı --
    Cantor'un Diagonal Yöntemi --
    Pisagor Teoremi --
    Merkezi Limit Teoremi --
    Hesabın Temel Teoremi --
    İkiz Asallar Konjektürü --
    Cebirin Temel Teoremi --
    Aritmetiğin Temel Teoremi --
    Dört Renk Teoremi --
    Zorn'un Lemması

    Temeller ve Yöntemler

    Matematik Felsefesi --
    Sezgici Matematik --
    Oluşturmacı Matematik --
    Matematiğin Temelleri --
    Kümeler Teorisi --
    Sembolik Mantık --
    Model Teorisi --
    Kategori Teorisi --
    Teorem İspatlama --
    Mantık --
    Tersine Matematik -

    Matematik Tarihi ve Dünyası

    Matematiğin Tarihi --
    Matematiğin kronolojisi --
    Matematikçiler --
    Matematik yarışmaları --
    Lateral düşünme

    Matematik Yazılımları

    Macsyma
    Maxima
    Matlab
    Mathematica
    Maple


    alıntıdır







  4. Ziyaretçi
    çok İşime yaradı tşk

+ Yorum Gönder

Hızlı Cevap Hızlı Cevap


:
matematikle ilgili bilmeceler,  matematikle ilgili ilginç bilgiler,  matematikle ilgili bilgi soruları,  matematikle ilgili bilgi
5 üzerinden 3.00 | Toplam : 2 kişi