+ Yorum Gönder
Yudumla ve Soru(lar) ve Cevap(lar) Bölümünden Matematikçilerin yaşamları ve matematiğe kazandırdıkları şeyler neler ile ilgili Kısaca Bilgi
  1. Ziyaretçi

    Matematikçilerin yaşamları ve matematiğe kazandırdıkları şeyler neler





  2. xRockİnGirLx
    Süper Moderator





    Cevap:
    El-HARİZMİ
    Ebu Abdullah Muhammed bin Musa El-Harezmi, Özbekistan’da doğdu. Doğum tarihi kesin olarak bilinmemektedir. Hayatı hakkında çok fazla bilgi bulunmamaktadır. Batı bilim dünyasında en sürekli, en derin etkiler bırakmış matematikçi olarak tanınmıştır. (MS 770-840)
    Tam adı Muhammed Bin Musa el-Harezmi olan bu büyük bilim adamı, Horasan’da (Özbekistan’ın Karizmi kentinde) doğmuştur.Hayatının büyük bir bölümü Bağdat’da (Beytü’l Hikme’de) matematik, astronomi ve coğrafya konularında çalışarak geçmiştir.
    Cebirin kurucusu olan Harezmi’nin iki önemli matematik kitabı vardır; “Cebir” ve “Hint Hesabı”.Harezm’de temel eğitimini alan Harezmi gençlinin ilk yıllarında Bağdat’taki ileri bilim atmosferinin varlığını öğrenir.
    İlmi konulara doyumsuz denilebilecek seviyedeki bir aşkla bağlı olan Harezmi ilmi konularda çalışma idealini gerçekleştirmek için Bağdat’a gelir ve yerleşir. Devrinde bilginleri himayesi ile meşhur olan abbasi halifesi Mem’un Harezmideki ilim kabiliyetten haberdar olunca onu kendisi tarafından Eski Mısır, Mezopotamya, Grek ve Eski hint medeniyetlerine ait eserlerle zenginleştirilmiş Bağdat Saray Kütüphanesinin idaresinde görevlendirilir. Daha sonra da Bağdat Saray Kütüphanesindeki yabancı eserlerin tercümesini yapmak amacıyla kurulan bir tercüme akademisi olan Beyt’ül Hikme ‘de görevlendirilir. Böylece Harezmi Bağdat’ta inceleme ve araştırma yapabilmek için gerekli bütün maddi ve manevi imkanlara kavuşur. Burada hayata ait bütün endişelerden uzak olarak matematik ve astronomi ile ilgili araştırmalarına başlar.
    Bağdat bilim atmosferi içerisinde kısa zamanda üne kavuşan Harezmi Şam’da bulunan Kasiyun Rasathanesin’de çalışan bilim heyetinde ve yerkürenin bir derecelik meridyen yayı uzunluğunu ölçmek için Sincar Ovasına giden bilim heyetinde bulunduğu gibi Hint matematiğini incelemek için Afganistan üzerinden Hindistana giden bilim heyetine başkanlık da etmiştir.
    Harezmi ‘nin latinceye çevrilen eserlerinden olan El-Kitab ‘ul Muhtasar fi ‘l Hesab ‘il cebri ve ‘l Mukabele adlı eserinde ikinci dereceden bir bilinmeyenli ve iki bilinmeyenli denklem sistemlerinin çözümlerini inceler.
    El Harizmi matematiğin yanısıra astronomi ve coğrafya ilimlerinde de eserler vermiştir. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince’ ye çevrilmiştir. Bunu yanısıra Ptolemy’nin coğrafya kitabını düzeltmelerle yeniden yazmış, 70 tane bilim adamıyla birlikte çalışarak 830 yılında bir dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır.
    El Harizmi’nin en çok ilgi gören eserleri Kitabü’l muhtasar fi’l Cebr ve’l Mukabele ve Kitabü’l muhtasar fi Hisabü’l Hindi dir.
    Harizmi, doğu bilim dünyasında cebir ilmine ilişkin ilk eser yazan kişidir. Bu bilim dalı daha önce az çok işlenmiş ve kısmen geometriden ayrı bir ilim dalı olmaya başlamıştı. Birinci dereceden denklemler çözülebiliyordu, hatta hesaplama metodlarıyla ikinci dereceden denklemlere çözüm bulunuyordu. Fakat henüz ikinci derece denklemlerin köklerini bulma yöntemi geliştirilmemişti.
    İşte El Harizmi’nin El Cebr ve’l Mukabele kitabı ikinci dereceden denklemlerin çözüm yolunu sistemli olarak işleyen ilk eser niteliğindedir ve 600 yıldan uzun bir süre (15. yüzyıla kadar) el üstünde tutulmasının nedeni de budur.
    Harizmi’nin Denklem Grupları
    El Harizmi, adı geçen eserinde denklemleri iki grupta toplamaktadır:
    Birinci grupta, çözümleri derhal bulunabilen bizim bugünkü sembollerle ifade edersek
    x2 = ax
    x2 = n
    ax = n
    şeklindeki denklemlerdir.
    Bunların çözüm kurallarını gösterdikten sonra El- Harizmi ikinci denklem grubuna geçer.
    x2 + ax = n
    x2 +n = ax
    ax + n = x2
    Ve bunların çözümünü bugün bildiğimiz metotla yapar.
    Bu kitapta ayrıca, ikinci dereceden denklemlerin hangi durumlarda iki kökünün , hangi durumlarda çift kökünün olacağını ve hangi durumlarda denklemin reel kökü olamayacağını çok açık bir şekilde belirtmiştir. Bu kuralları bir öğretmen yeteneğiyle ortaya koyduktan sonra El Harizmi , bu kuralları geometrik olarak ispatlamıştır.
    Harizmi’nin bu eseri matematik tarihi bakımından çok önemli gelişmelere dayanak ve başlangıç olmuş 600 yıldan biraz daha fazla (15. y.y. sonuna kadar) matematik öğretimi için temel sayılmıştır. Eser, Endülüs medreseleri aracılığıyla Batı’ya geçmiştir. İlk Latince çevirisi 1183′te yapılmıştır. Roger Bacon, Fibonacci gibi bilim adamaları eseri hayranlıkla incelemişler, ve kendi öğretilerinde bu eserden faydalanmışlardır. 1486 yılında Leipzig Üniversitesi’nde okutulmaya başlanmıştır. 1598 -1599 yıllarında hala cebir biliminde tek kaynak Harizmi’nin bu eseridir.
    El Harizmi matematiğin yanısıra astronomi ve coğrafya ilimlerinde de eserler vermiştir. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince’ ye çevrilmiştir. Bunun yanı sıra Ptolemy’nin coğrafya kitabını düzeltmelerle yeniden yazmış, 70 tane bilim adamıyla birlikte çalışarak 830 yılında bir dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır.


    PİSAGOR (Pythagoras)
    ( M.Ö. 570′e doğru - M.Ö. 480′e doğru).
    Güney İtalya’da ve ardından Yunanistan’da büyük etki uyandıran bir okulun kurucusudur. Limnili bir ailenin çocuğuydu, Polykrates’in tiranlığı yüzünden 530′a doğru Kroton’a göç etmek zorunda kaldı ve orada çevresine birçok öğrenci topladı. “Pythagorasçılar” bilimsel, felsefi, siyasal ve dinsel bir topluluk oluşturdular. Bu topluluk içinde matematik, gökbilim, müzik-bilim, fizyoloji ve tıp inceleniyor, nesnelerin ilkesi sayılara bağlanıyor ve her alanda evrensel bir uyum aranıyordu. Topluluk, kendine özgü ve yoğun bir dinsel yaşamın merkeziydi. Pythagorasçı aritmetik, aynı birim kümeleriyle özdeşleştirilen ve noktaların bir araya gelmesiyle simgelenen tamsayılarla sınırlıdır. Bu simgesel sayılar, üçgen, dörtgen, beşgen vb. sayılar ve kendilerine denk düşen geometrik dağılımın biçimine göre çokdüzlemli sayılar olarak sınıflandırılıyorlardı. Aritmetrikleri görseldi, şu anlamda ki sayıların biçimi, özellikleri konusunda bilgi veriyordu. M.Ö. V. yy’da Pythagorasçılar, Öklid’in genel bir kuramını ortaya koyduğu yetkin sayılar (çarpanlarının toplamına eşit olan sayılar, örneğin 6 ve 28) ve dost sayılar (birinin çarpanlarının toplamı ötekine eşit olan sayı çiftleri, örneğin 284 ve 220) gibi özel sayı tiplerini incelediler.
    Proklos, a2 + b2 = c2 eşitliğini sağlayarak Pythagorasçı üçlüler (a,b,c) oluşturmak olanağı veren formülü Pythagoras’a mal etti. Pythagorasçılar ayrıca a - b = b - c gibi aritmetik, a : b = b :c gibi geometrik, (a - b) : a= (b - c) : c gibi armonik ortalamaları inceleyip, tamsayılarla sınırlı bir oranlar kuramını da geliştirdiler. Bir karenin köşegen ve kenarının eş ölçeksizliğinin, yani uzunluklarının ortak bir ölçünün tam katlarıyla ifade edilememesinin keşfi, genellikle onlara atfedilir. Bunun, Pythagoras’tan esinlendiği söylenir. Oysa bu keşif, her şey sayıdır önerisinde ileri sürüldüğü gibi, dünyanın tamsayılara uygunluğu düşüncesine son verdiği için derin bir bunalıma yol açtı. Gerçekten de Pythagorasçı doğa görüşü her şeye bir tam sayı atfediyordu. Bu görüş, aynı sayıları düzenleyerek çeşitli büyüklüklerle, çeşitli ortamlarda aynı müzik armonilerini ve aynı geometrik biçimler ortaya konulabileceği gözlemine dayanıyordu. Örneğin, kenarları 3:4:5 ile orantılı her üçgen, dik üçgendi (Pythagoras teoremi). Ayrıca Pythagoras’ın daha önce Babylonialılar’ın bildikleri bu teoremin bir tanıtlamasını yapıp yapmadığı da bilinmemektedir.

    PASCAL
    Pascal, 19 Haziran 1623 günü Fransa’da Clermont’ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris’e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal’ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.
    Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton’dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat’la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues’dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.
    Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal’ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides’in “Elements” adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.
    Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides’in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert’in anlattıklarına göre; Pascal Euclides’in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
    Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal’ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu’yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal’a bir memurluk verir.
    Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal’ın bu büyük teoremine “kedi beşiği” adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes’i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal’ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal’ın geometrisinde çokluk yoktur.
    Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.
    Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.
    1648 yılında Toriçelli’nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal’la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal’ın barometre deneyleri düşüncesini, Mersenne’nin çalışmalarından çalmış olmasından şüphelendi. Descartes’le Pascal’ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal’sa Jansen’in mezhebini savunuyordu. Pascal’ın açık sözlü kız kardeşi Jacqueline’nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes’in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.
    Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat’la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat’ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal’ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.
    Bu büyük olasılıklar kuramının çıkış nedeni, Pascal’a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal’ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.1
    11
    121
    1331
    14641
    Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal’ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.
    Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır








  3. Ziyaretçi
    çok güzel anlatılmış tebrikler







  4. Ziyaretçi
    güzel anlatmışlar

  5. Ziyaretçi
    güzell olmuş

+ Yorum Gönder
pascalın matematiğe katkıları,  harezminin matematiğe kazandırdıkları,  ünlü matematikçinin hayatı ve matematiğe kazandırdıkları,  harezminin matematiğe katkıları,  ünlü türk ve islam matematikçilerinin hayatı ve matematiğe kazandırdıkları
5 üzerinden 3.09 | Toplam : 11 kişi